Assembly of $[Mn^{\parallel 2}Mn^{\parallel 1}$ ₂] $S = 9$ Clusters via Azido Bridges: a New Single-Chain Magnet

Albert Escuer,^{*,†} Gina Vlahopoulou,[†] and Franz A. Mautner[†]

†Departament de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1–11, Barcelona 08028, Spain
‡Institut für Physikalische and Theoretische Chemie Technische Universität Craz, A.8010 Craz, Austrie

[‡]Institut für Physikalische and Theoretische Chemie, Technische Universität Graz, A-8010 Graz, Austria

S Supporting Information

ABSTRACT: In the present work, we report a new manganese single-chain magnet built from tetranuclear $\text{Mn}^{\text{II}^{\text{U}}}_{\text{2}}\text{Mn}^{\text{III}}_{\text{2}}$ mixed-valence units linked by end-on azido and oximato bridges. All of the intra- and intercluster interactions involve end-on azido bridges, resulting in one ferromagnetic chain of ferromagnetic clusters with local ground state $S = 9$.

Research of molecule-based compounds that have a remnant
magnetization in the absence of the external magnetic field is
magnetization is a conditation of positive since the discovery of a growing topic in coordination chemistry since the discovery of the first single-molecule magnet (SMM) in 1993.¹ More recently, Gatteschi et al.² extended the study to one-dimensional $(1D)$ systems (single-chain magnets, SCMs), which usually show greater relaxation times. Common features needed to obtain this kind of molecular or 1D system are a nonzero magnetic response at low temperature, anisotropic character, and well-isolation in the crystalline packing.

One of the major synthetic challenges in the design of molecular SMM or 1D SCM compounds is to reach an overall ferri- or ferromagnetic response. From the initial use of the azido ligand in 2001 in medium-nuclearity $M₉$ cluster chemistry³ and the experimental proof that this ligand tends to end-on coordination modes (inducing ferromagnetic interactions) in cluster compounds, azido has been extensively employed in cluster syntheses.⁴ During the past decade, the azido ligand contributed to reach giant spin $S = {^{83}} /_{2}$ Mn₁₉ systems or several impressive high-nuclearity clusters containing more than 20 metallic centers in carboxylato, alkoxo, pyridylalkoxo, or salicyloximato chemistry, often exhibiting SMM properties.⁵ In contrast, manganese/ pyridyloximato/azido chemistry remains practically unexplored in spite of its potential possibilities and only some $Mn₄$ and $Mn₆$ units and one chain of Mn₄ units have been reported until now.⁶

The azido ligand also plays a significant role in the synthesis of SCM, as a bridge in conventional homospin chains like $[Co(bt)(N_3)_2]_n$ (bt = 2,2'-bithiazoline)⁷ or as a linker in chains of clusters like $[Mn_4(hmp)_6(N_3)_2]_n(ClO_4)_{2n}$ [hmpH = 2-(hydroxymethyl)pyridine],^{8a} [Mn₃O(tbusalox)₃ (N₃)-2-(hydroxymethyl)pyridine],^{8a} [Mn₃O(tbusalox)₃ (N₃)- $(CH_3OH)_4$] (tbusalox = 3,5-di-tert-butylsalicylaldoxime),⁸ $[\text{Mn}_6(N_3)_4(\text{O}_2\text{CMe})_2(\text{dpkd})_2$ (dpkme)₂(MeOH)₂]_n (dpkd²⁻ and dpkme²⁻ = diol derivatives of dipyridylketone),^{8c} or $[Mn_6O_2]$ $(4-MeOsalox)_{6}(N_{3})_{2}(MeOH)_{4}$ (MeOsalox = 2-hydroxy-4methoxysalicylaldoxime).^{8d}

Following our previous work in metal oximato chemistry, we have centered our attention on the ligand 6-methylpyridine-2 carbaldehydeoxime, $(6$ -Mepy $)C(H)$ NOH, for which only one $\mathrm{Ni}_{9}^{\mathrm{II}}$ compound has been characterized.⁹ In this work, we report the initial use of $(6-Mepy)C(H)NOH$ in manganese chemistry describing the neutral 1D system $[Mn_4\{(6-Mepy)C(H)NO\}_{4}^ (N_3)_6]_n \cdot 2nEt_2O(1 \cdot 2Et_2O).$

EXERCUTE ACTS
 Margretin Chemical Society 2717 Control Society 2717 Control Society 2717 (Valid Chemical Society 2717)

Advertised Chemical Society 2717 distributed in the state of the state of the state of the st Ligand $(6-Mepy)C(H)NOH$ was synthesized by a conventional reaction of 6-methylpyridine-2-carboxaldehyde and hydroxylamime hydrochloride in a basic $(NaCH₃COO)$ medium. Compound $1.2Et_2O$ was obtained in good yield by a reaction in a methanolic medium of $Mn(hfacac)_2 \cdot 3H_2O$, $(Mepy)C(H)$ NOH, and NaN₃ in a 1:1:2 ratio. After the resulting dark-brown solution was layered with diethyl ether, X-ray-quality prismatic crystals of $1.2Et_2O$ were obtained after 4 days. Synthesis can also be carried out starting from weakly coordinating anions as manganese perchlorate or triflate salts. The structure¹⁰ of 1 can be envisaged as neutral chains of tetranuclear $\text{Mn}_{2}^{\text{II}}\text{Mn}_{2}^{\text{III}}$ rings (Figure 1) linked by means of double end-on azido bridges. The MnN_4O_2 trans-coordination environment around the trivalent Mn(1) atom is defined by four azido N atoms and two O atoms from bridging oximato groups. The $Mn-N$ bond distances are similar $[2.105(3)$ and $2.169(3)$ Å] and larger than the Mn $-O(1a,b)$ bond distances of 1.908(3) Å. Additionally, the polyhedron around $Mn(1)$ is a compressed octahedron along the O $-Mn-O$ axis. The MnN₆ cis-coordination environment for the divalent $Mn(2)$ atom is defined by the pyridinic N donors of two 6-Mepy NO^- ligands, two N atoms from bridging oximato groups, and two azido N atoms that bridge $\text{Mn}(2)$ with $\text{Mn}(1)$ and $\text{Mn}(1b)$. Bond distances range between 2.194(3) and 2.273(3) Å. The octahedron is strongly distorted, exhibiting trans and cis bond angles in the 149.6- $(1)-167.8(1)$ ^o and 73.3(1)-115.4(1)^o ranges, respectively. Each neighbor $Mn(1)/Mn(2)$ atom is bridged by one

Published: March 09, 2011 Received: November 30, 2010

Fi**gure 1.** Partially labeled plot of the local Mn₄ units of 1. Manganese color code: Mn^{II}, orange; Mn^{III}, dark green.

Figure 2. (Top) View of the chain of tetranuclear clusters linked by means of double azido bridges. (Bottom) Packing view along the [001] direction showing the well-isolated chains.

 $\eta^1{:}\eta^1{:}\eta^1{:}\mu$ -(6-Mepy)C(H)NO oximato and one end-on azido ligand (Figure 1). The $Mn(1)-N(1)-Mn(2)$ bond angle is 117.1(1)°, resulting in an intraring Mn \cdots Mn distance of 3.6669(8) Å. The Mn(1b)-O(1)-N(8)-Mn(2) torsion angle takes a value of $15.2(3)$ °.

It is noteworthy that the double azido $-\alpha$ ximato bridge is not a recognizable fragment in previously reported manganese/azido/ oximato clusters. The bridging ligands are placed above and below the plane defined by the four Mn atoms in a pseudotetrahedral arrangement as a result of the local symmetry. An important feature is that the two $O-Mn(1)-O$ axis are quasiorthogonal between them. Each tetranuclear unit is linked to two

Figure 3. $\chi_M T$ product vs T plot for complex 1. Inset: Magnetization measurement up to 5 T. Solid lines are guides for the eye.

equivalent ones by means of double end-on azido bridges [Figure 2 (top)], with a $Mn(1)-N(4)-Mn(1d)$ bond angle of $103.1(2)$ ^o, resulting in a Mn \cdots Mn distance between adjacent tetramers of $3.397(1)$ Å. The chains are well-isolated and intrachain hydrogen bonds or $\pi-\pi$ stacking was not found [Figure 2 (bottom)].

Direct-current (dc) susceptibility measurements were performed between 300 and 2 K on powdered samples under external fields of 0.3 T (300-30 K) and 0.015 T (30-2 K) to avoid saturation effects. The room temperature χ_{M} T value is 15.00 cm³ K mol⁻¹, which is slightly greater than the $g = 2.00$ value of 14.75 $\text{cm}^3 \text{ K} \text{ mol}^{-1}$ expected for a Mn^{II} ₂Mn^{III}₂ unit. On cooling, $\chi_M T$ increases gradually, reaching a maximum value of 153 cm³ K mol⁻¹ at 5.5 K. Below this temperature, $\chi_M T$ decreases to 75 $\text{cm}^3 \text{ K} \text{ mol}^{-1}$ at 1.8 K (Figure 3). The continuous increase of the $\chi_M T$ product is only compatible with a system with ferromagnetic interactions inside the tetrameric units, and the maximum value of 153 $\text{cm}^3 \text{ K} \text{ mol}^{-1}$, clearly larger than the expected value for a ferromagnetic $Mn_{2}^{II}Mn_{2}^{III}$ ring (S = 9, $45.00 \text{ cm}^3 \text{ K mol}^{-1}$), indicates ferromagnetic interactions between the tetrameric clusters.

These data support the 1D response of the system that magnetically can be described as a ferromagnetic chain of ferromagnetic rings with local ground state $S = 9$. Calculation of intracluster (assuming isolated clusters, $J_{\text{intra}} \gg J_{\text{inter}}$) or intercluster (assuming isolated Mn^{III} dimers, $J_{intra} \ll J_{inter}$) coupling constants using the high T susceptibility values was ambiguous, indicating that both constants contribute significantly to the global coupling (Figure S1 in the Supporting Information). Magnetization experiments at 2 K up to 5 T show a very fast magnetization ($M\mu_B$ = 7.3 under a field of only 0.15 T), suggesting that the stronger coupling may correspond to the interaction between Mn ^{III} ions mediated by double azido bridges. When the external field is increased, the magnetization gradually reaches a value equivalent to 16 electrons under the maximum field. Relevant features for the field-cooled/zero-fieldcooled (FC/ZFC) measurements or hysteresis cycle were not found, indicating a blocking temperature lower than 2 K (Figure S2 in the Supporting Information). Reduced magnetization experiments show a small gap at different fields, indicating moderate anisotropy of the ground state (Figure S3 in the Supporting Information).

The structural data and the dc magnetic response of 1 allow a description of the system as well-isolated ferromagnetic chains of $S = 9$ local spins, and then to probe the magnetization dynamics

Figure 4. Plot of the out-of-phase (χ_M'') ac susceptibility signals for complex 1. Measurements were performed under an oscillating field of 4 G at the indicated frequencies.

Figure 5. Peak temperatures of χ_M ¹¹ ac susceptibility measurements fitted to the Arrhenius law for a complex.

of 1, alternating-current (ac) experiments were performed at $1.8-10$ K under an oscillating field of 4 G. Susceptibility measurements show complete peaks above 1.8 K for frequencies in the $350-1500$ Hz range and only the tail of the curves for low frequencies (Figure 4). Debye treatment of the frequency dependence of ac returns an α value of 0.06 (Figure S4 in the Supporting Information). The shift of the peak temperature (T_p) is given by the parameter $F = (\Delta T_p/T_p)/\Delta(\log \omega) = 0.14$, which lies in the expected range for a SCM $(0.1 < F < 0.3)$, discarding spin-glass behavior.¹¹

A fit of the Arrhenius plot from the ac $\chi_{\text{M}}^{\prime\prime}$ vs T data (Figure 5) gives $\Delta E = 24$ K and $\tau_0 = 7.3 \times 10^{-12}$ s, where ΔE is the energy barrier for the magnetization relaxation and τ_0 is the preexponential factor. 1D Ising chain behavior is also confirmed bythe linear fit of the linear region of $\ln(\chi' T)$ vs T^{-1} , which returns an energy gap Δ_{ξ} = 7.7 K (Figure S5 in the Supporting Information).¹²

The relatively low barrier found for 1 in spite of the ferromagnetic interactions along the chain and the high local spins should be attributed to the unfavorable alignment of the easy axis of the anisotropic centers $Mn(1)/Mn(1b)$. Compound 1 provides a new example of the relevant versatility of the azido ligand in the syntheses of high-spin molecular or extended systems, and current efforts to obtain related chains with a series of (R) pyridyloximato ligands are in due course.

ASSOCIATED CONTENT

6 Supporting Information. Crystallographic data for complex 1.2 Et₂O in CIF format, a Cole-Cole plot, and FC/ZFC measurement, a reduced magnetization plot, an Argand plot, and a linear fit of the semilog χ_M/T vs $1/T$ for 1. This material is available free of charge via the Internet at http://pubs.acs.org.

NUTHOR INFORMATION

Corresponding Author

*E-mail: albert.escuer@ub.edu. Tel: 934039138. Fax: 934907725.

ACKNOWLEDGMENT

This work was supported by CICYT Project CTQ2009-07264. A.E. is thankful for financial support from the Excellence in Research ICREA-Academia Award. F.A.M. thanks J. Baumgartner and J. H. Albering (Technische Universität Graz) for support.

REFERENCES

(1) Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. MRS Bull. 2000, 25, 66.

(2) Caneschi, A.; Gatteschi, D.; Lalioti, N.; Sangregorio, C.; Sessoli, R.; Venturi, G.; Vindigni, A.; Rettori, A.; Pini, M. G.; Novak, M. A. Angew. Chem. 2001, 113, 1810; Angew. Chem., Int. Ed. 2001, 40, 1760.

(3) (a) Papaefstathiou, G. S.; Perlepes, S. P.; Escuer, A.; Vicente, R.; Font-Bardia, M.; Solans, X. Angew. Chem., Int. Ed. 2001, 40, 884. (b) Papaefstathiou, G. S.; Escuer, A.; Vicente, R.; Font-Bardia, M.; Solans, X.; Perlepes, S. P. Chem. Commun. 2001, 2414.

(4) For a review, see: Escuer, A.; Aromi, G. Eur. J. Inorg. Chem. 2006, 4721.

(5) For a review, see: Stamatatos, T. C.; Christou, G. Inorg. Chem. 2009, 48, 3308.

(6) (a) Lampropoulos, C.; Stamatatos, Th. C.; Manos, M. J.; Tasiopoulos, A. J.; Abboud, K. A.; Christou, G. Eur. J. Inorg. Chem. 2010, 2234. (b) Milios, C. J.; Piligkos, S.; Bell, A. R.; Laye, R. H.; Teat, S. J.; Vicente, R.; McInnes, E.; Escuer, A.; Perlepes, S. P.; Winpenny, R. E. P. Inorg. Chem. Commun. 2006, 9, 638. (c) Zaleski, C. M.; Weng, T. C.; Dendrinou-Samara, C.; Alexiou, M.; Kanakaraki, P.; Hsieh, W. Y.; Kampf, J.; Penner-Hahn, J. E.; Pecoraro, V. L.; Kessissoglou, D. P. Inorg. Chem. 2008, 47, 6127.

(7) Liu, T.-F.; Fu, D.; Gao, S.; Zhang, Y.-Z.; Sun, H.-L.; Su, G.; Liu, Y.-J. J. Am. Chem. Soc. 2003, 125, 13976.

(8) (a) Lecren, L.; Roubeau, O.; Coulon, C.; Li, Y.-G.; Goff, X. F. L.; Wernsdorfer, W.; Miyasaka, H.; Clerac, R. J. Am. Chem. Soc. 2005, 127, 17353. (b) Xu, H.-B.; Wang, B.-W.; Pan, F.; Wang, Z.-M.; Gao, S. Angew. Chem., Int. Ed. 2007, 46, 7388. (c) Stamatatos, T. C.; Abboud, K. A.; Wernsdorfer, W.; Christou, G. Inorg. Chem. 2009, 48, 807. (d) Yang, C.-I.; Tsai, Y.-J.; Hung, S.-P.; Tsai, H.-L.; Nakano, M. Chem. Commun. 2010, 5716.

(9) Pajunen, A.; Mutikainen, I.; Saarinen, H.; Orama, M. Z. Kristallogr.—New Cryst. Struct. 1999, 214, 217.

(10) Crystal data for $1 \cdot Et_2O: C_{14}H_{14}Mn_2N_{13}O_2 \cdot C_4H_{10}O$ (580.38), orthorhombic, *Ibam*, $a = 20.391(2)$ Å, $b = 13.470(1)$ Å, $c =$ 17.911(2) Å, $V = 4919.5(7)$ Å³, $Z = 8$, $T = 100(2)$ K, λ (Mo K α) = 0.710 73 Å, 32 014 reflections collected, 2510 unique $(R_{int} = 0.040)$, R1 = 0.0479, wR2 = 0.1361. CCDC deposition number 802314.

(11) Mydosh, J. A. Spin Glasses: An Experimental Introduction; Taylor & Francis: London, 1993.

(12) Coulon, C.; Clérac, R.; Lecren, L.; Wernsdorfer, W.; Miyasaka, H. Phys. Rev. B 2004, 69, 132408.